BIOMIMETIC DESIGN

Day 2

ITP 2013 Fall
Biomimetic Design
Gabriella Levine | Gabriellalevine.com | gabriella.levine@gmail.com

SCHEDULE

Over the course of 7 weeks [15:30-18:00]
3 Assignments:
[1 week]
[1 week]
[4 weeks : this is your core project]

TODAY

1. Readings

3:30-4:10
2. Go over your projects

4:10-4:40
2. Lecture : 4:40-5:30

Types of motion \& actuators
[break]
Achieving Motion with form \& code
4. Biological systems

Debrief \& Assignment \#2
5:30-6:00

NEXT WEEK

1. Discussion + Lecture:

Al / Cybernetics \& Cyborgs
Synthetic biology \& Living design
Renewable Energy
Biological \& Digital Inputs: Sensors
2. HW presentations
3. Launch Final Assignment

In class worktime on initial ideas

BIOMIMETIC EXAMPLES

What makes a biomimetic design effective?
Is it always effective to use biology as an inspiration for optimization and model?

What are the limitations?
What is the potential?

BIOMIMETIC PRINCIPLES

- Nature runs on sunlight
- Nature uses only the energy it needs
- Nature fits form to function
- Nature recycles everything
- Nature rewards cooperation
- Nature banks on diversity
- Nature demands local expertise
- Nature curbs excesses from within
- Nature taps the power of limits
- Jan Benyus

CIRCUMVENTIVE ORGANS

FLOOD-READY MANHATTAN

Inspired by flexible mesh webbing to increase resilience

ANIMAL - COMPUTER INTERACTION

Utrecht School of the Arts, Playing with Pigs, Pig Chase

ANIMAL - COMPUTER INTERACTION

Natalie Jeremijenko, Communication Technology for Birds,

PROJECTS

Project presentations [7 minutes]

1. What biological system or joint is your device based on?
2. What type of motion is it?
3. What is the purpose of the system?

MOTION

1. Types of Motion

2. Simple Machines
3. Actuators to create motion
4. Types of Algorithms for motion:
-Oscillation
-sine waves
-frequency, period, amplitude, wavelength
-Inverse Kinematics

CODE

github.com/gabriella/exploringBiomimicry

TYPES OF MOTION

1. Linear
2. circular (around an axis)
3. oscillation or periodic motion
4. vibration [reciprocating]
5. random [Brownian]

LINEAR

One dimensional: Motion along a straight line
A. uniform (constant velocity, no acceleration) B. variable velocity

LINEAR

ELBOW KNEE

CIRCULAR

Around a fixed axis, or on a circular path
A. uniform (constant velocity, no acceleration) B. variable velocity

BALL IN SOCKET

SHOULDER

 HIP

ROTATION

OSCILLATON

Periodic : back and forth at regular intervals Reciprocation : repetitive back and forh

OSCILLATON

EARTHWORM MILLIPEDE

VIBRATION

movement around one equilibrium point

RANDOM

Random moving of particles suspended in a fluid

ACTUATORS

servo motors (continuous or ~180)
linear actuators
stepper motors
dc motors (w/ encoders)
motorless (muscle wire, air)

MOTORLESS MOTION

Fluid Pressure
Hydraulics
Pneumatics
"Artificial Muscle"
Memory Alloy
Nitinol wire
Polymers

STELARC'S PNEUMATICS

LOW POWER ROBOT

NITINOL

NITINOL

NITINOL

CONVERTING MOTION

Cranks
Cams
Linkages

CRANKS

Rotary to oscillating motion

CAMS

The cam turns and the cam follower moves up and down

LINKAGES

Connection between units, at a joint

6 SIMPLE MACHINES

1. Gears
2. Pulleys
3. Levers
4. Wheels
5. Screws
6. Inclined Planes

GEARS

Spur Gears Worm Gears
Rack and Pinion

PULLEYS

Wheel on an axel supports movement of a cable

LEVERS

1st class lever:

2nd class lever:

WHEELS

Rotation around the axel

INCLINED PLANES

Mechanical advantage = length/height

SCREWS

Special type of inclined plane around interior shaft

MOTIONS IN CODE

Sine wave
Inverse Kinematics
[Flocking
Particle Systems
Line Following
Edge Detection]

SINE WAVE

$$
y=A * \sin (b)
$$

A = amplitude of the wave
$b=$ period (cycles between 0 and 360 degrees (2PI))

SINE WAVE

$$
\begin{aligned}
& A=1 \\
& A=2 \\
& A=1 / 2
\end{aligned}
$$

$$
y=A * \sin (b)
$$

SINE WAVE

$$
\begin{aligned}
& y=\sin (x) \\
& y=\sin (1 / 2 x) \\
& y=\sin (2 x)
\end{aligned}
$$

$$
y=A * \sin (b)
$$

SINE WAVE

$$
y=A * \sin (b)
$$

Wednesday, September 11, 13

Workbook12

Q－Search in Sheet

目进	星	ER	\％	2.		fx 凩	100\％			Q－Search in Sheet
A Home	Layout	Tables	Charts	Chart Layout	Format	SmartArt	Formulas	Data	Review	

INVERSE KINEMATICS

INVERSE KINEMATICS

INVERSE KINEMATICS

INVERSE KINEMATICS

some code

IN HARDWARE

1. sweep
2. wave table array
3. servo sine wave class
4. inverse kinematics

BIOLOGICAL FUNCTIONS

1. Maintenance
2. Metabolism
3. Nutrition
4. Respiration
5. Growth
6. Exchange of Materials
7. Transportation
8. Excretion
9. Irritability

BIOLOGICAL FEEDBACK

POSITIVE FEEDBACK

BIOLOGICAL FEEDBACK

POSITIVE FEEDBACK

BIOLOGICAL FEEDBACK

NEGATIVE FEEDBACK

BIOLOGICAL FEEDBACK

NEGATIVE FEEDBACK

Sweat glands secrete sweat that evaporates, cooling the body.

Homeostasis:

Temperature falls below normal.
Blood vessels in skin constrict minimizing heat loss. miniming heat loss

HOMEOSTASIS

HOMEOSTASIS

HOMEOSTASIS

Human Population: Past, Present, and Future

SYMBIOSIS : MUTUALISM

SYMBIOSIS : COMMENSALISM

SYMBIOSIS : PARASITISM

CORDYCEPS FUNGI

BIOMIMICRY in BIOLOGY

- DEFENSIVE
- AGGRESSIVE
- AUTOMIMICRY

BIOMIMICRY in BIOLOGY

BIOMIMICRY in BIOLOGY

BIOMIMICRY in BIOLOGY

BIOMIMICRY in BIOLOGY

TODAY

1. readings \& homework
2. demo projects
3. methods of motion \& lecture
4. assignment

NEXT WEEK

1. Discussion + Lecture:

Al / Cybernetics \& Cyborgs
Synthetic biology \& Living design
Renewable Energy
Biological \& Digital Inputs: Sensors
2. HW presentations
3. Launch Final Assignment

In class worktime on initial ideas

ASSIGNMENTS

What ideas do you have for a final project in this class?

ASSIGNMENT

By Tuesday at 2 PM, have your posts (or links to posts) up online GROUPS OF 3

Build a new kind of biomimetic sensor:
Identify a living organism, or the sensory system of a particular organism. Design a concept for a new type of sensor that mimics that organic system. [You can use organic material]

Present at a concept diagram that explains:

1. who is the user?
2. what is the task accomplished?
3. Why is it unique?
4. Outline the technological / fabrication methods that you would use to accomplish this.
